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the scattering angle 208 is non-zero. Nevertheless, 
these terms have proved satisfactory in many situ- 
ations and thus constitute a good approximation. The 
greater parts of the corrections here come from scat- 
tering from the L shells, which belong to the atomic 
cores, and should not be greatly affected by pressure. 
As far as the Debye-Waller  factors are concerned, a 
guess can be made for the effect of stress by comparing 
a fractional change in volume due to hydrostatic 
pressure with the same change due to temperature. 
A pressure of0-1 GPa at room temperature is roughly 
equivalent to a reduction of 80 K from room tem- 
perature. This latter change would reduce BI and B2 
by 32%, corresponding to an increase in T, and 7"2 
of about 6%. All in all, the factors neglected might 
mean an uncertainty of +5% in the values of S and 
I that are used to locate the end points (marked 0.25) 
of the theoretical lines in Fig. 2. The factors neglected 
are in no way large enough to account for the incon- 
sistencies. 

5. Conclusion 

The theoretical basis for determining the internal 
strain in zinc-blende-structure materials has been 

presented and earlier work on gallium arsenide has 
been shown to have been inadequately analysed. 
Reanalysis in the manner of the present paper reveals 
strange inconsistencies. 

I am grateful to Leif Gerward of the Technical 
University of Denmark for supplying the dispersion 
corrections. 
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Abstract 

The propagation of neutron waves in a deformed 
crystal is considered from the point of view of quan- 
tum mechanics. Instead of solving the Takagi-Taupin 
equations the probability of transitions, induced by 
the variation of the interaction potential, between 
quantum states corresponding to the two sheets of 
the dispersion surface is calculated. In this way trans- 
mission and reflection coefficients for an incident 
plane wave are obtained after a simple analytical 
calculation for a wide class of crystal deformations. 
The predictions of this theory are found to be in 
agreement with direct solutions of the Takagi-Taupin 
equations as well as with the experimental results. 

I. Introduction 

A large number of papers have appeared in the last 
two decades confined to the theoretical treatment of 
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dynamical diffraction phenomena in deformed crys- 
tals. Starting from the pioneering works of Penning 
& Polder (1961) and Kato (1964) the theory has 
developed considerably after the amplitude-coupling 
equations for the propagation of the transmitted and 
reflected beams were formulated by Takagi 
(1962, 1969) and Taupin (1964). These equations, 
however, can be solved analytically only in the case 
of crystals with a constant strain gradient - for a 
complete treatment including an exhaustive list of 
references one should consult the paper of Chukhov- 
skii & Petrashen (1977). The solution is a degenerated 
hypergeometric function being rather complicated for 
practical integrated intensity evaluation. Although a 
simplified asymptotic expression for the wave ampli- 
tudes is available, little insight into the process of 
wave propagation is obtained from this solution. 

The theory of neutron diffraction by deformed crys- 
tals has been simply adopted from the X-ray literature 
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(e.g. Klar & Rustichelli, 1972; Michalec, Mikula & 
Vrfina, 1975) without regard to some specific proper- 
ties of neutron radiation. The nonzero rest mass and 
the low velocity of propagation makes it possible to 
treat the whole problem in terms of nonrelativistic 
quantum mechanics, which are more adequate to deal 
with diffraction of neutrons in crystals than classical 
optics. First results of such an approach leading to a 
simple calculation of the reflectivity of a bent crystal 
are reported in the present paper. 

2. T h e  n e u t r o n  s ta t e s  in the  crys ta l  in ter ior  

Proceeding in a way analogous to the conventional 
treatment of the dynamical theory, we shall start with 
a plane wave ~o = u exp (ikr) incident from vacuum 
upon the crystal surface. The vacuum wave generates 
in the crystal a coherent wave qt(r) that has to satisfy 
the SchrSdinger equation 

- ~ m  72 + V(r) ~ ( r ) =  Eqt(r). (1) 

The interaction potential is taken in the form of the 
Fermi pseudopotential 

V(r)=(2.a 'h2/  m)  ~ 6 ( r -  r,), 
i 

where m denotes the neutron rest mass and b; the 
scattering length of the ith nucleus. Equation (1) is 
then solved using the Bloch waves ~ ( r ) =  
u(r) exp (iKr) and passing by a Fourier transforma- 
tion from (l) to a homogeneous set of linear equations 
in terms of the Fourier components V0, VG and Uo, 
UG of V(r) and u(r), respectively. In the case of two 
strong crystal waves the system reads 

(To + Vo - E)"  Uo + V-GUG = 0 
(2) 

Vouo +(TG + Vo -- E)Uo = 0 

with T o = h 2 K 2 / ( 2 m )  and T G = h 2 ( K + G ) 2 / ( 2 m ) ,  
where G is the reciprocal-lattice vector representing 
the actual reflection. The two roots of the determinant 
of this system are the energy eigenvalues of the per- 
mitted neutron states in the crystal 

E,,2 = To + Vo +½{ TG -- To +[(TG - To) 2 +4 V G V - o ]  '/2} 

(3) 

and define the wave vectors of the crystal waves. To 
determine their amplitudes the boundary conditions 
at the crystal surface have to be used in addition to 
(2). The complete description of this procedure 
including the derivation of some of the formulas used 
in this section is found in the book by Pinsker (1978) 
and in the papers on neutron dynamical diffraction 
by, for example, Sears (1978) or Rauch & Petrascheck 
(1978) - whose notation we use. 

The deviation of the scattering angle 0 from the 
precise Bragg angle 0B for the incident vacuum wave 
will be represented by a parameter a, 

a = (G 2 +2k.  G) /k  2 = 2 sin 208(0n - 0) (4) 

or by the parameter y, 

ab - (1 - b)Xo 
(5) 

y -  21blW2XG 

with XO, G = Vo, c / E  (assuming a centrosymmetrical 
crystal to ensure XG = X-G)  and b being the ratio of 
the direction cosines of the incident and reflected 
wave vectors with respect to the inner surface normal, 
b = Yo/YG. TO be able to deal with angular deviations 
for the wavefields inside the crystal, we shall introduce 
a second pair of similar parameters 

a = ( G  2 +2K.  G ) / K  2 (6) 

and 

Y = a / ( 2 X G ) .  (7) 

Clearly a and a differ from each other just by the 
angular shift caused by refraction at the crystal 
surface, 

(;) a = a +  1 -  Xo. (8) 

From (5) and (7) it then follows that 

Y = y / l b l  1/2 (9) 

The factor Ibl is included in the definition (5) of y to 
ensure the particle-flux conservation at the crystal 
surface for an arbitrary case of asymmetric reflection. 
On the other hand, Y refers to the crystal interior, 
where the flux is related directly to the reflecting 
planes-a  situation equivalent to Ibl- 1. 

The wavefields in the directions of the transmitted 
and reflected wave are superpositions of the contribu- 
tions from both permitted states qj(i) and ~0<2): 

q,o = q/o 1~ + q/g) 

= U~o l) exp (iKlr) + U~o 2) exp (iK2r), 
~G = O~ ) + ~b(~ ) (1 O) 

= u~ ) exp [i(Kl + G)r] + u~ ) exp [i(K2 + G)r]. 

The ratio of the amplitudes is governed by the internal 
reflection coefficients Cl,2 = u~'2)/U<o 1"2) that are easily 
obtained from (2) and (3) in the form 

CI, 2 
E,,2-(To + Vo) 

Vc 

7 :c -  To + [(To - To) 2 +4V~]  '/2 

2 v ~  

• or, with the help of (6) and (7),  

cl.2 = y + ( y 2 +  1)1/2. ( l l )  
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The direction of the neutron flux in the crystal is 
parallel to the dispersion-surface normal, hence in 
the Bragg case at most one of the states 0(t), ~bt2) has 
to be considered in the boundary conditions while in 
the Laue case both states always play a role. At large 
[YI values these differences become less important 
and it follows from (10) and (11) that in both cases 
for Y'~ 0 only U~o ~) may differ from zero appreciably, 
so that 

lim gr = 0~ol). (12a) 
y ~  -oo  

Similarly, for large positive deviations, Y >> 0, we have 
U(o 2~ - u and 

lim ~ =  0(0 2). (12b) 
y.-* +co 

An evaluation of the intensities of the partial waves 
0(0 ~), ~b(o 2) and 0~  ), 0t~) shows that already at Y - - - 2  
the wave 0(o ~) carries about 90% of the energy of the 
whole crystal wave T (obviously the same holds for 
0~o 2) at g - -  2). 

3. Calculation of the transmission 
and reflection coefficients 

Let us consider a deformed crystal in which the 
angular deviation A0----0a- 0 is a function of posi- 
tion. As coordinates we shall choose, similarly to the 
Takagi-Taupin theory, the flight paths So and so in 
the directions of the transmitted and reflected beam, 
respectively. The internal deviation parameter a con- 
sists now of two parts: a s - - a ( 0 ,  0) related by (8) to 
a being a measure of deviation from Bragg angle of 
the incident vacuum wave with respect to the entrance 
surface and - a o = - 2 h  (0/0so)(G.u), a position- 
dependent contribution of the deformation in the 
crystal interior (e.g. Takagi, 1969), where h is the 
neutron wavelength and u denotes the local deforma- 
tion amplitude. Again, we can pass to the dimension- 
less parameter 

Y = Y~- Yo(so, so) 

= a ( 0 , 0 ) - 2 h - - ( G . u )  /(2xo). (13) 
Oso 

In what follows we shall assume that Y~ has a deriva- 
tive 0 YJOso which is continuous along So and that 
Y~ varies on a mactoscopic scale only, i.e. 

0 
A -  Y~(so, so)"~ 1. 

0 S o  

An incident vacuum wave ~o satisfying the Bragg 
condition somewhere inside the crystal but being far 
from it at the surface will excite only a strong refracted 
wave travelling into the crystal interior. Let us assume 
Y ,~0 ,  then, according to (12a), ~ - 0 ( o  ~ and the 

neutron is in the state Ot,~ with energy E~ (the lower 
branch of the dispersion surface). According to the 
adiabatical theorem of quantum mechanics (e.g. 
Messiah, 1962) in the case of an infinitely slow vari- 
ation of the parameter Y along the flight path the 
quantum state of the neutron would not change. 
Hence, along all the flight path gr = 0t~) and only the 
internal reflection coefficient c~ varies with Y accord- 
ing to (11). After passing into the range of Y >> 0, we 
have g r -  ~bc and total reflection will occur (i.e. unit 
probability for transition from 0o to 0c). This result 
is equivalent to that obtained for X-rays on the basis 
of the theory developed by Penning & Polder (1961). 

The formal apparatus of quantum mechanics per- 
mits us to make one very important step more, to 
calculate the probability wl2 of transition from the 
state $cI) into the state 0(2) caused by a finite rate of 
variation of the parameter Y. We shall examine the 
transmission probability that the neutron being 
initially (time z ~ -co,  deviation Y ~ -oo) in the state 
~o ~) will be found at ~'~ +oo, Y ~  +oo in the state 
~o 2). According to the quasi-classical approach 
described by Landau & Lifshitz (1965) w~2 in our case 
may be computed as 

w,:=exp(~Im f Ed" O, 
c 

(14) 

where the label Im indicates that only the imaginary 
part is taken of the action integral S = ~c E(r)dz .  The 
integration path C in the complex plane includes one 
of the roots r; of E(r )  representing the classically 
inaccessible transition points between the states 0 t~) 
and 0c2), where E~(rj)= E2('rj). As the energy E is 
always real for real values of the time variable z, the 
imaginary part of S is formed only along that part 
of the path C where d~- has a nonzero imaginary 
component,  while E still remains real. As a con- 
sequence, any shift of the coordinate system in the 
direction of the real axis leaves Im S unaffected and 
we may always choose the origin in such a way to 
ensure Tj -- i ~ with ~ real so that 

(i ) | m S = I m  Ej dr  + Ek dr  , j , k = l , 2 .  (15) 

One has to bear in mind that the positive sense of 
integration along C corresponds to a counter-clock- 
wise passage in the complex plane and on the left- 
hand and right-hand sides with respect to the 
imaginary axis the energy attains different eigenvalues 
Ej. From a pair of possible integration paths C~.2 
(including different transition points rj), that one has 
to be chosen that yields a negative value of Im S to 
satisfy in (13) the natural requirement 0 < - Wjk "~ 1. 
Once more benefitting from the fact that E,.2 are real 
along the integration path, we can use the substitution 
7-= ± it '  to express Im S by integrals of real functions 
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of a real variable (which will be denoted by r again): 

-~ 0 
Im S =  ~ E j ( i r ) d r -  ~ Ek(ir)dr.  (16) 

o - ~  

The different signs + in the substitution have to be 
applied to keep the integration paths on the proper 
side of the origin corresponding to the different 
quantum states. 

In our case the interaction energy depends on time 
only indirectly through the deviation parameter Y. 
After some straight-forward manipulations the energy 
e i g e n v a l u e s  El,2 (equation 3) are expressed with the 
help of the quantity Y as 

EI.2=½(To+TG +2Vo)+ VG(y2+I) I/2. (17) 

The part of the right-hand side of (17) contained in 
the round brackets remains always real and can be 
omitted in the following calculations. The rest has 
two purely imaginary roots YL2 = + i representing the 
transition points between the two permitted states, 
obviously YI,2 = Y(rl,2). Analogously to rl,2 in (15), 
we shall write them as Yi.2 = ir/1.2 and, setting + i Y  
instead of Y in (17) -[leading to El,2= + 
V~(1-  y2)1/2], we return to the real axis. Recalling 
that So = v .r  and  assuming a monotonic dependence 
of Y on So [to guarantee the existence of the inverse 
function to Y(r)] we can use the inverse of the substi- 
tution Y = Y(r) leading to d r  = (Y') - ld  Y with Y' = 
v.a Y/aso,  where v. is the neutron velocity, to arrive 
at an expression analogous to (16): 

Im S =  V~ ~ sgn( j ) (1-  Y 2 ) I / 2 ( Y ' ) - I d Y  
0 

- i sgn(k)(1-  y2) l /2 (y , ) - ,  d Y ] .  
- -  r / j  

According to (17) the signs of the energy eigenvalues 
are opposite, sgn( j )=-sgn(k) ,  so that we may write 

i ] Wjk = exp [L 2 V c h  sgn(j) (1 -- y2 )1 /2 (  y,)-!  d y . 

- r / j  

(18) 

The choice of the proper value r/j is seen at best with 
the help of Fig. 1 which displays the asymptotic 
behaviour of the neutron wave functions $o) and $o) 
together with the integration paths Cl and (72. tn 
accordance with (12a, b), the sign + in the left-hand 
part of the integration paths and the sign -. in the 
right-hand part should be taken in (15) and (16) for 
E = El and E = E2, respectively. When Wl2 is calcu- 
lated, Y ' >  0 and sgn(1) -- +l  holds: to achieve a nega- 
tive value of the integral sol has to be negative. The 
transition points on both the r and Y scale lie in the 
same half of the complex plane with respect to the 
• real axis and the integration is performed along the 

path Cl including the point Y = - i  in• Fig. 1. Similarly 
w21 corresponds to C2 and Y =  +i. 

As the only term in the integrand representing the 
crystal deformation 

O Y Av. t92(G . u )  
Y'=  v,, = 

CgSo I7" OSoOSG 

is symmetric in So, sc,, the interchange of the incident 
and reflected beams brings about just the opposite 
case with Y~ >>0 and transition from 0 (2) to O (I). 
Invariance with respect to the inversion of the beam 
directions is obtained in this way similarly to the 
optical treatment and there is no neressity to distin- 
guish between wl: and w21 in the rest of this section. 

Using the concept of the reduced flight path 

"a" V G 1  
AO.G = -~ XcSo.~ = --~ V'~, So.c,, 

we arrive at the final expression for the probability 
of reflection in a non-absorbing crystal 

r(Y,) = 1 - w(Y,) 
I 

- - l - e x p [ - 2 ' f  ( t - y 2 ) l / i l a Y ~ o l - l d Y ] '  (19) 

- 1  

• which follows immediately from the particle con- 
servation law r (Ys )  + w ( Y s )  = 1. 

To obtain the integrated reflectiv.ity py we have to 
"sum the contributions from all the incident plane 
waves (represented by angular deviation parameter 

: -y) satisfying the Bragg condition in the crystal interior • ~ 
. . , 

Py = S r( Y~)dy. : " 

With the help of (9) and recalling from (13) that Y = 0 '" 
implies Ys = Y~, we arrive at an approximate result; 

py = b I/21 j" r(Y,) d Ysl, (20i 
Yo 

not taking into account the intensity scattered at the - 

y ~ - ~  

?(1) _.. (~(1) 

?(2) . -  ?e(2) 

C2 

D 

.~ tmV " "' , 

: y . . . ~  + ~  • 

'6  
,,2) _ .  %(,,  

Y-i 

I - I ~ Y  

Y - - i  

Fig. 1. The asYmptotic behaviour  of  the wavefields and the integra- 
. . . .  t ion 15aths in the complex Y plane. 

¶ 
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crystal surface. On the angular scale we have then 

Xc 1 
Po sin 20B b I/2 Py 

_ X________.q.__Csin 20s f r ( Y s ) d Y s ] ,  (21) 
Yo 

a value independent of the asymmetry factor 1/b '/2 
similar to the result of the kinematical theory for an 
ideally imperfect crystal. 

4. The reflecting power of a bent crystal 

As an example of application of these results we shall 
calculate in this section the probability of reflection 
of a neutron by a homogeneously bent crystal in the 
symmetric Bragg case. Klar & Rustichelli (1972) have 
performed a similar calculation by numerical integra- 
tion of the Takagi equations; their paper can be also 
referred to for a more detailed derivation of the 
following expressions. 

The internal deviation field is introduced in the 
form 

Yv(A)=cA ,  (22) 

where A is a reduced depth parameter related to the 
reduced flight paths by 

A =  -('yoAo + 3,cAc)/(yo[yc[) ~/2. (23) 

For practical purposes it is more convenient to con- 
nect A to the depth t in the crystal plate directly by 

A = (2Fhk,dhkt/12)t, (24) 

where Fhkt and dhgt are the structure factor and the 
interplanar spacing, respectively, and O is the unit- 
cell volume. The angular deviation AO caused by the 
deformation is related to the Y parameter by 

_ . .  Fhkld2kl 
AO = Z r tan 0B. (25) 

7r.O 

From simple geometrical considerations it follows 
that the angular misorientation along the neutron 
flight path over a crystal plate of thickness At bent 
with radius R is given by 

At 
g0 = ~- cot 0B. (26) 

Combining the last four equations, we arrive at an 
expression for the constant c, 

A Yv 7r$22 cot 2 0t3 1 
c -  AA 2 3 (27) 4Fhkldhk I R" 

The constancy of c implies that the reflectivity for 
any incident plane wave satisfying at some depth A 
in the crystal interior the Bragg condition I"5- 

Yv(A) = 0 (13) does not depend on Ys: 
I 

r = 1 - exp - -  (1 - -  y2)l/2d Y 
¢ 

-1 

= 1 - exp ( -  ~r/c). (28) 

To obtain the integrated reflectivity we shall use 
(20) with b = - 1  yielding an approximate result 

p y = l A Y o l [ 1 - e x p  ( -  fr/c)]. (29) 

On the angular scale there follows from (26), (27) 
and (29) 

At 
Po = ~- cot 0~ 

4Fhktdhkl R . (30) 
X 1 - e x p  ~2 cot2 0~ 

The pre-exponential factor in (30) is nothing else than 
the integrated reflectivity p,am predicted by the simple 
lamellar models (White, 1950; Egert & Dachs, 1970). 
The exponent may be rearranged as 

At R 
Q.  

sm 0B At cot 0~ 

denoting by Q = A3F2hkt/(.Q 2 c o t  2 0 B )  the kinematical 
reflectivity per unit beam path. Expression (30) 
acquires then a simpler form 

[3=fllam[1--exp(--pkin/,olam)]. (31) 

Obviously, at small deformations when p~am ,~ .pk in  the 
lam exponent in (31) becomes very small so that p - p 

and the integrated intensity is proportional to the 
deformation. At large deformations the reflectivity 
predicted by the lamellar model diverges, p l a t o  _ kin 
but the exponential approaches unity and the 
expansion 

p k i n ~  kin 

exp --p--T~m] -- i--P------,am 
p 

can be used to obtain the proper physical limit 
kin p = p  

5. Comparison with experimental results 

A sufficient test of the results obtained in the preceed- 
ing sections would be the comparison with the results 
of the exact solution of the Takagi equations for a 
homogeneously bent crystal. In the existing literature 
dealing with experimental studies of neutron diffrac- 
tion by bent crystals, e.g. Egert & Dachs (1970), Alber- 
tini, Boeuf, Klar, Lagomarsini, Mazkedian, Melone, 
Puliti & Rustichelli (1977), Albertini, Boeuf, Maz- 
kedian, Melone, Rozzi & Rustichelli (1977), consider- 
able discrepancies can be found between observed 
intensities and theoretical predictions that cannot be 
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explained by the approximations contained in the 
simplified models. We are thus justified to include in 
this paper a comparison of our calculations with the 
results of a simple experiment. 

In a nondispersive parallel double-crystal arrange- 
ment, symmetric 220 Bragg reflections from two 
silicon single-crystal plates of dimensions 200 ×35 × 
5 mm were used at a Bragg angle 0B = 13.67 ° corres- 
ponding to the neutron wavelength A = 0.091 nm. The 
second crystal was mounted in a special bending 
holder with provision for a direct measurement of 
the deformation by a contact micrometer (for more 
details see Kulda & Mikula, 1983). The rocking curves 
for a number of the bending radius values R were 
then recorded, two of them are displayed in Fig. 2. 
They retain the box-like shape characteristic of the 
rocking curve of a perfect crystal, the peak reflectivity 
drops, however, at greater deformations. 

The FWHM of the rocking curves in Fig. 3 increases 
proportionately to the reciprocal value of the bending 
radius as expected from (26). Instead of the crystal 
thickness, a modified value including the total width 
of the incident beam has to be employed. As it was 
not possible to fix it directly by the experimental 
arrangement with sufficient precision, we have deter- 
mined it by fitting a straight line to the experimental 
points in Fig. 3. The resulting effective value is At = 
11"4 mm, hence the line in Fig. 3 corresponds to the 
dependence 80 = (0.0114/R) cot 13.67 °. 

In Fig. 4 the experimental values of the peak count 
(a) and integrated intensity (b) are displayed together 
with the results of calculations for the actual values 
of the experimental parameters. The dashed lines 
represent the predictions of the simple lamellar model 
while the solid curves were computed from (28) and 
(30). A good quantitative agreement is found in the 
latter case for the whole range of bending radii, only 
the integrated intensities calculated from the rocking 
curves are, at higher deformations, systematically 
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Fig. 2. Bent-crystal rocking curves for bending radii R = 20 m (0)  
and R = 200 m (O). 

lower by 2-3% than the theoretical values. This is 
most probably an effect of the limited angular scan- 
ning range that made it impossible to measure the 
tails of the wider curves far enough from the peak 
position. 

6. Discussion 

The presented calculation of the reflecting power is 
based on a formula giving the transition probability 
between states @tl) and @~2) that only asymptotically 
coincide with the observable states ~o and ~ .  As a 
consequence, our treatment is valid only if the wave 
under consideration passes the whole range of reflec- 
tion from negative to positive Y values or vice  versa.  

Fortunately, this requirement represents no major 
restriction as already at Y = + 2 the waves @to"2) carry 
90% of the whole crystal wavefield intensity. For the 

50 
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Fig. 3. FWHM of the bent-crystal rocking curves plotted against 
the reciprocal value of the bending radius. 
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Fig. 4. Dependence of  (a) peak intensities and (b) integrals of  the 
bent-crystal rocking curves on the reciprocal value of the  bending 
radius. The solid curves indicate the values calculated from (28) 
and (30). 
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same reason it is necessary that the wave enters and 
leaves the crystal at a Ys value far enough from zero 
so that ~ =  ~¢o ~ or g/o 2) at the crystal surface. The 
reflection of waves satisfying the Bragg condition at 
the crystal surface is not included in this simple 
treatment. This means that only the central part of 
the rocking curve corresponding to incident plane 
waves satisfying the Bragg condition in the crystal 
interior can be calculated, not its tails. 

Whenever the conditions for the validity of our 
approach are fulfilled, (28) and (29) give equally pre- 
cise results as the solution of the Takagi-Taupin 
equations. The reflectivity expression (28) is inden- 
tical with the 'static factor' obtained by Chukhovskii 
& Petrashen (1977) from the asymptotic expansion 
of the analytical solution of the Takagi equations for 
a homogeneously bent crystal. Our derivation is, 
however, more general, not being limited to a special 
deformation case. Furthermore, we have compared 
the reflectivity values given by (28) with the results 
of numerical solution of the Takagi equations for a 
bent crystal reported by Klar & Rustichelli (1972)and 
by Albertini, Boeuf, Klar, Lagomarsino, Mazkedian, 
Melone, Puliti & Rustichelli (1977). Our formula 
yields precisely the top values of the computed rock- 
ing curves when the intensity oscillations of the exact 
solution are averaged. 

Our approach provides an interesting link between 
the dynamical theory and the 'lamellar'  models 
frequently used for interpretation of neutron diffrac- 
tion effects in deformed crystals. In these models the 
crystal is divided into subregions mutually misorien- 
ted by the width of the total reflection range of the 
Darwin curve of a perfect crystal, i.e. by Ay = 2. For 
slight deformations, when the thickness of individual 
lamellae largely exceeds the extinction length and 
total reflection may be assumed, the model gives 
proper results. At strong deformations these assump- 
tions become invalid and unphysical results are 
obtained, e.g. integrated intensity exceeding the value 
given by the kinematical formula. Efforts have been 
made either to include a phenomenological saturation 
factor (White, 1950) or to treat individual lamellae as 
perfect-crystal wafers (Albertini, Boeuf, Cesini, Maz- 
kedian, Melone & Rustichelli, 1976; Albertini, Boeuf, 
Klar, Lagomarsino, Mazkedian, Melone, Puliti & 
Rustichelli, 1977; Albertini, Boeuf, Mazkedian, 
Melone, Rozzi & Rustichelli, 1977). No really satisfy- 
ing results have been obtained in either case both 
from the view of labour content and of real physical 
insight into the problem. Our formula (19) relates the 
probability of reflection to the deformation in the 
crystal region where -1  <- Y<- 1, i.e. just inside one 
lamella. In this way the model is completed in the 
most natural way to provide correct description of 
diffraction effects in deformed crystals. In this context 
the presented treatment provides a derivation of an 
improved 'lamellar' model based on the dynamical 

theory of neutron diffraction and free of phenomeno- 
logical arguments. 

7. Conclusion 

A new quantum-mechanical treatment of neutron 
diffraction by deformed crystals, leading to a simple 
analytical calculation of the reflecting power, has 
been reported. The results possess a physically proper 
asymptotical behaviour and explain correctly the 
observed variation of the diffracted intensity with the 
degree of deformation. The final expression for the 
reflectivity is a more general form of the 'static factor' 
obtained from the asymptotic expansion of the exact 
solution of the Takagi-Taupin equations for a 
homogeneous quadratic deformation. This coin- 
cidence suggests that the application range of the 
method presented here should be extended to the 
X-ray case despite the fact that it cannot be directly 
derived from the existing theory of X-ray dynamical 
scattering. 
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